快捷搜索:  新豪计划

OPPO 采用的是国内公司奥比中光的解决方案

  3D 感测技术路线很多,不同技术的性能不同,适合的应用领域也不同。在 消费电子应用领域,目前主流的 3D 感测技术有两种:3D 结构光(3D Structure Light)和时间飞行法(TOF, Time of Flight)。

  3D 结构光在消费电子领域的商用最早可追溯到 2009 年,微软与以色列 3D 感测公司 PrimeSense 合作发布了搭载 3D 结构光模组的体感设备 Kinect 一 代,2010 年 11 月上市后,该产品成为 2011 年销售最快的消费电子设备。尽管 产品大获成功,但第一代 Kinect 的准确度、图像分辨率和响应速度并不理想, 微软在 2009 年和 2010 年先后收购了以色列 TOF 相机公司 3DV Systems 和 3D 手势识别公司 Canesta,并在 2013 年终止了与 PrimeSense 的合作,自行研发推出搭载 TOF 摄像头的 Kinect 2 代产品。

  然而好景不长,由于缺乏爆款游戏 应用、硬件亏本销售等问题的存在,2017 年 10 月微软表示已经停止生产 Kinect, 自 2011 年上市以来累计销量仅 3500 万部。

  尽管 Kinect 失败,但在游戏市场 的沉淀使得 3D 感测技术日益成熟。2017 年苹果发布 iPhone X,首次搭载 3D 结构光模组,可实现 3D 人脸识别技术,成为苹果近两年最大的创新。

  此前由 于半导体工艺等多方面技术的限制,3D 感测很难应用到体积非常有限、功耗要求低的手机上,因此 iPhone X 的发布是 3D 结构光技术的重大突破,市场对 3D 结构光技术的热情重新点燃。苹果的 3D 结构光方案正是来自为微软 Kinect 一 代提供技术方案的 PrimeSense,苹果在 2013 年 11 月宣布以 3.6 亿美元收购该 公司。

  苹果之外,主要 3D 结构光方案厂商还有美国的英特尔、高通/Himax, 以色列 Mantis Vision 以及国内华为、奥比中光等公司。

  2014 年英特尔发布全 球首款内嵌于各种智能设备的 3D 景深摄像头 RealSense,采用 3D 结构光技术, 应用在联想、戴尔等多款超极本电脑以及无人机等设备中。同年高通宣布与影像 IC 设计公司奇景光电 Himax 合作提供高分辨率、低功耗的 3D 结构光模组 SLiMTM。

  iPhone X 发布后,国内小米、华为和 OPPO 也先后发布了首款搭载 3D 结构光模组的智能手机,其中小米采用的是以色列 Mantis Vision 公司的解决 方案,华为采用的是自研方案,OPPO 采用的是国内公司奥比中光的解决方案。苹果在 2018 年和 2019 年的 iPhone 新产品中也全部搭载了 3D 结构光模组。

  TOF 最早的商用可追溯到 2006 年 7 月,衍生自 CSEM(瑞士电子与微技术 中心)的MESA Imaging公司成立,并推出商用TOF摄像头产品系列SwissRanger, 最开始应用于汽车的被动安全检测。2014 年,MESA 被新加坡微型光学器件厂商 Heptagon 收购,Heptagon 在 2016 年又被奥地利知名传感器厂商ams(艾迈斯半导体)收购, 在小型化 TOF 传感器领域已经具备了一定优势。

  2015 年,索尼索尼收购比利时手势识别技术公司 SoftKinetic,该公司拥有知名 DepthSense TOF 感测系统,两年后索尼就发布了全球最小的 TOF 模组。

  TOF 技 术首次应用到智能手机是在 2016 年,Google 和联想合作推出了全球首个搭载 TOF 模组的智能手机 Phab2 Pro,采用的是 pmd/英飞凌的 TOF 方案,该手机可 实现一些如三维测量等简易的 AR 应用,但并没有引起市场较大的反响。

  英飞凌和德国 3D 感测公司 pmd 在 TOF 领域合作了数十年,并开发出了知名的 REAL3 TOF 传感器芯片,其中 pmd 主要提供 TOF 像素矩阵,英飞凌主要提供芯片上系 统(SoC)集成的所有功能组件,并开发相应的制造工艺,该方案还用在了华 硕 2017 年发布的 AR 智能手机 Zenfone 上。

  ▲英飞凌的REAL3 3D图像传感器芯片可以实现小巧的TOF摄像头模块,便于轻松集成到小巧的电子装置中(图片来源:芯智讯)

  2018 年 8 月 6 日,OPPO 在北京召开 了 TOF 技术沟通会, 并在 8 月 23 日发布了其首部搭载 TOF 摄像头的智能手机 OPPO R17 Pro,采用了 Sony 的解决方案。随后在 2018 年 12 月,vivo 发布了其 首部搭载 TOF 摄像头的智能手机 vivo NEX 双屏版,采用了松下的解决方案;华为发布了其首部搭载 TOF 摄像头模组的智能手机荣耀 V20,采用的是 OPPO R17 Pro 相同的 TOF 方案。

  进入 2019 年后,安卓厂商纷纷加入 TOF 镜头的阵营,2019 年 2 月,三星发布了 Galaxy S10 5G,前后分别各搭载一颗 TOF 镜头;LG 发布 了 LG G8 ThinQ,搭载后置 TOF 镜头,采用了英飞凌的解决方案;联想发布了 Z6 Pro 5G 手机,搭载了后置 TOF 镜头。华为在 6 月份在中端机型 nova 5 Pro 上也搭载了后置 TOF 镜头。

  目前除小米以外,主要安卓手机厂商均发布了搭载 TOF 模组的智能手机, 其中华为和三星发布的机型数量相对较多。

  据腾讯科技、集微网、韩国网站The Elec 等多家媒体报道,供应链消息 称苹果将在 2020 年的 iPad Pro 和两款 iPhone 中搭载 TOF 后置镜头,前置人 脸识别摄像头则还是沿用 3D 结构光的技术。报道还表示苹果或借助定制 CMOS 的方式模拟人眼功能,实现 AR 实景导航等应用,突破当前 TOF 镜头缺乏“硬” 用的瓶颈。苹果的入局有望加快安卓端的渗透速度,业界普遍看好 TOF 模组将 在 2020 年迎来放量。

  我们对主要品牌手机厂商的 TOF 机型 2019 年和 2020 年 的渗透率进行了假设,预测 2019/2020 年全球搭载 TOF 模组的智能手机出货量 分别为 4300 万和 1.5 亿部。考虑到华为、三星等部分高端机型搭载前后 TOF 模组,预测 2019/2020 年全球智能手机的 TOF 模组合计为 5700 万和 1.83 亿个。

  3D 结构光方案的原理是采用红外光源,发射出来的光经过一定的编码投影 在物体上,这些图案经物体表面反射回来时,随着物体距离的不同会发生不同 的形变,图像传感器将形变后的图案拍下来。基于三角定位法,可以通过计算 拍下来的图案里的每个像素的变形量,来得到对应的视差,从而进一步得到深 度值。

  TOF 方案的原理是采用红外光源发射高频光脉冲到物体上,然后接收从物 体反射回去的光脉冲,通过探测光脉冲的飞行(往返)时间来计算被测物体离 相机的距离。

  对比 iPhone 的 3D 结构光模组和 OPPO R17 Pro 的 TOF 模组,可看出二者的组成结构类似,3D 结构光只是在发射端多了一个点阵投影仪,但实际上两种方案中采用的泛光照明器和近红外摄像头有很大区别。3D 结构光模组中最复杂的器件为点阵投影仪,TOF 模组中最复杂的器件为近红外摄像头(即 TOF Sensor, TOF 传感器)。

  具体包括光束整形器(Beam shaper)和投射透镜(Projection lens), 其中光束整形器又包括扩束元件(Beam Homogenizer)和准直元件(Collimator)。光束整形器的作用是将 VCSEL 输出的光束变成横截面积较大的、均匀的准直光 束,其中扩束元件的作用在于扩大激光的横截面积,使其可以覆盖整个 DOE, 准直元件的作用是将扩束后的激光重新调成平行光。投影透镜位于 DOE 之后, 用于放大光束,,使其达到一定的覆盖范围;

  指采用光刻工艺生产的表面带有阶梯状衍射结构的光学元件,用于形成 特定编码的光学图案,是整个 3D 结构光模组中最核心的部件,光学图案最后 经过投射透镜发射出去。

  3D 结构光和 TOF 中的泛光照明器(Flood illuminator)都由一个 VCSEL 和 Diffuser(扩散器)组成,两者主要区别在于 3D 结构光中采用的是低功率 VCSEL,用于在光线较暗的环境下补光,从而在黑夜中也能提供完整的深度图;TOF 中采用的是高功率 VCSEL,用于向物体发射光脉冲,需要在白天和夜晚都 能工作。iPhone X 中的泛光照明器和 TOF 距离传感器(Proximity Sensor)封 装在一起,由 STM 供应。3D 结构光和 TOF 中的近红外摄像头(Near-infrared Camera)都由一个红外 CMOS 传感器、窄带滤光片(Narrow band filter)和 聚焦透镜(Focus lens)组成,二者的主要区别在于红外 CMOS 传感器的性能 不同。

  3D 结构光中点阵投影仪、泛光照明器以及 TOF 中泛光照明器 中采用的 VCSEL 性能有很大区别。结构光的 VCSEL 需要制作成特定的图案,对 图案表现的一致性、器件高温漂移情况、发热表现、耐环境高温等都会有更高 的要求,从而对供应商的设计能力、工艺及产品良率的考验也更大,全球可实 现量产的厂商仅有美国 Lumetum、被 ams 收购 Princeton Optronics 等。TOF 中泛光照明器的 VCSEL 输出光束无需经过编码,因此器件制作上更为简单,可 供选择的 VCSEL 供应商也更多。

  Diffuser 是 DOE 的一种,也属于波束整形器,用于对 输入光束进行均一化,通过使较大折射角处具有更大屈光度,使得较窄的光束 扩展到更宽的角度范围内,并具备均匀的照明场。TOF 中的 Diffuser 的设计制 作难度,比 3D 结构光点阵投影仪中的 DOE 要简单很多,全球具备先进 DOE 设 计与制造的公司屈指可数,主要有德国 CDA、法国 Silios 和德国 Holoeye, iPhone X 中的 DOE 由 Primesense 自行设计 pattern 图案,台积电提供 pattern 微纳加工,采钰提供 ITO 材料,精材科技提供器件封装。Diffuser 的供货厂商 则较多,包括 Finisar(被 II-VI 收购)、PRC(被 Viavi 收购)及 Himax 等。

  由于发射端光源 VCSEL 发射的是特定波长(850nm/940nm) 的近红外光,窄带滤光片可将该波长以外的环境光“剔除”,使仅有该波长的 近红外光进入图像传感器,从而避免环境光的干扰。窄带滤光片的薄膜由低折 射率和高折射率的两种膜组成,叠加后层数达几十层,每一层薄膜的参数漂移 都可能影响最终性能。而且窄带滤光片透过率对薄膜的损耗非常敏感,所以制 备峰值透过率很高、半带宽又很窄的滤光片非常困难。全球仅有美国厂商 Viavi 和国内厂商水晶光电可供应。

  3D 结构光的近红外摄像头要求较低,其作用是成像, iPhone X 的近红外摄像头由意法半导体提供,采用 Soitec 公司的 Imager-SOI 技术,具有更高的量子效率和极低的噪声。TOF 的近红外摄像头要求则比 3D 结 构光高的多,因为 TOF 发射的是高频调制脉冲,脉冲频率可高达 100MHz,从而 使得传感器的感光时间非常短,达到纳秒级别,因此要保证一定的信噪比,单 像素尺寸要比一般摄像机大很多,目前 TOF 传感器的单像素尺寸最小为 10m (如 Sony 的 IMX556PLR,1/2”,对应分辨率为 640 x 480,即 30 万像素),而 RGB 传感器的像素尺寸目前最小可达 0.8m(如 Sony 的 IMX586,同样 1/2”, 像素高达 4800 万),iPhone X 的近红外摄像头为 140 万像素。因此分辨率低是 TOF 方案的硬伤之一,早年的 TOF 传感器,多采用 CCD 类型,CCD 相比 CMOS 感 光利用率更高,但是功耗十分大,发热严重,也是此前 TOF 方案未能应用在手 机中的原因之一。

  随着图像传感器厂商不断提高 CMOS 传感器的技术,通过背 照式(BIS, Backside Illumination)设计、电流辅助光子演示(CPAD)技术,并将高速率多帧图像合成单张图像用以计算最终的深度,在降低图像噪声的同 时降低了功耗,从而使 TOF 应用于手机成为可能,但对应的 TOF 传感器芯片成 本也高出很多。

  尽管目前已经推出的 TOF 手机功能众多,利如美图功能可进一步优化手机 拍照的景深效果,“三维建模”功能可以实现体型测量、AR 尺子、Emoji 表情 等,但以上功能对于用户而言更多是尝鲜,并不实用,难以拉动长期需求。实 际上,在智能手机之外,TOF 模组还有更广阔的应用市场,包括智慧驾驶、机 器人、智能家居、智慧电视、智能安防和 VR/AR 等,目前在这些领域,TOF 技 术的应用尚处于起步阶段。

  5G 时代推动物联网应用,从而带来各类智能设备对三维感知能力的需求。TOF 凭借其成本优势、优秀的实时感知能力将成为主流的 3D 感测方案。尤其是 在 VR/AR 应用领域,对于时延有很高要求,从而避免眩晕感,TOF 则是相对最 适合的空间定位技术。在汽车应用领域,TOF 可以用于手势识别、车内驾驶员 状态监测、以及车外物体探测等。在工业物流应用领域,TOF 可以用于采集包 裹的三维信息,直接计算不同包裹的体积,从而降低人工成本;此外 TOF 还可 以用于避障系统,如扫地机器人,且凭借其对光照条件不敏感的优点可用于户 外远距离应用,如物流机器人、引导机器人等。

  据 IHS Markit 报告, 2018 年 全球 TOF 传感器市场规模为 3.7 亿美元,占整个 3D 感测市场的 33%,2019 年 其市场规模将同比增长 35%,达 5 亿美元,占比提高至 40%左右。基于 TOF 方 案的多方面优势,尤其是成本优势,预计 2022 年 TOF 市场规模将达到 15 亿美 元,占比整个 3D 感测市场的 50%左右。

  从具体应用领域来看,未来 3 年 TOF 主要的应用市场还是来自智能手机市 场,预计 2020 年对应市场规模超过 6 亿美元,占整个市场的 90%以上,其次是 平板电脑市场、建筑物检测、智能家居、汽车中控、无人机等应用领域,2021 年平板电脑市场将迎来翻倍增长。我们认为 IHS 对于 2020 年 TOF 市场规模预 测较为保守,按照我们在第一章内容中的预测,2020 年全球智能手机 TOF 模组 出货量约 1.83 亿个,按 10 美金的单价计算,对应市场规模约 18 亿美元。

  整个 3D 感测产业链包括 3D 摄像头模组(包括 3D 结构光和 TOF)、软件算 法以及系统整体解决方案提供商 3 个环节。而 3D 结构光和 TOF 模组基本组 成相同,都由光源(illuminator)、传感器阵列(Sensor Array)和光学器 件(Optics)等零部件组成。据 Yole 预测,2023 年整个 3D 摄像头模组的市 场规模可达 155 亿美元,其中光源市场占 14%,传感器市场占 17%,光学器 件市场占 28%,模组市场占 40%。

  方案商方面,3D 结构光阵营厂商主要有苹果(收购 Prime Sense)、英特 尔(RealSense 产品)、ams、高通/Himax、Mantis Vision、华为、奥比中光 等。TOF 阵营厂商主要有微软、索尼、松下、英飞凌/pmd、ADI、ams、ST、TI、Melexis、 ESPROS 以及国内公司聚芯微电子、炬佑智能等。

  ams整个行业布局最完善的公司,拥有 3D 结构光和 TOF 两种解决方案,且 基本全产业链都有布局。iPhone X 3D 结构光模组中的点阵投影仪即为ams供 应,其中的 WLO 透镜(来自 2017 年收购的子公司 Heptagon)也由其供应。在 TOF 方案中,公司拥有 TARA 和 TARASLIM 两个系列的泛光照明器产品,分别适 用于家用机器人和汽车等应用的广角手势传感和头部追踪以及手机中的脸部 识别。

  (注:关于英飞凌的TOF方案和ams的3D结构光方案可参看芯智讯此前文章《3D sensing市场加速爆发,TOF和结构光谁将更胜一筹?》,关于ADI的TOF方案可以参看《ADI的TOF 3D方案已广泛应用,后续将推采用CMOS TOF Sensor》:)

  Sony 是 CIS(图像传感器)领域的龙头厂商,因此在 TOF 传感器领域具备 先发优势,公司从 2009 年起开始研发 BSI(背照式)传感器技术,与 2015 年收 购的 Softkinetic 研发的电流辅助光子调节器(CAPD)相结合,推出了深度感 应性能更高,体积更小的新型背照式 TOF 传感器 DepthSense 系列产品。2017 年公司推出的首个背照式 TOF 传感器 IMX456QL 尺寸仅有 1/2 英寸(8mm),并拥 有 VGA 分辨率(30 万像素),价格约人民币 176 元。目前市场上大半的 TOF 手 机采用的都是 Sony 的 TOF 方案。此外,知名汽车半导体 Melexis 在 2015 年与 索尼签订了专利许可协议,获准在自家产品中应用索尼的 DepthSense ToF 技 术。

  英飞凌是全球领先的半导体公司,与知名TOF厂商pmd合作研发TOF模组, 其中 pmd 主要负责 TOF 像素和 TOF 系统研发, 英飞凌主要负责半导体工艺、产 品研发和产生。目前,双方已合作推出多款 REAL3 系列 ToF 图像传感器,最新 款第四代 REAL3 图像传感器型号为 IRS2771C,芯片面积仅为 4.6mm×5mm,接 近 HVGA(15 万像素)的分辨率。

  意法半导体(STM)是全球知名半导体公司,目前已推出了三代 TOF 相关 产品,VL6180、VL53L0X 和 VL53L1X。自苹果 iPhone 7 发布以来,公司一直为 苹果提供定制款 TOF 距离传感器(Proximity Sensor)。此外在 iPhone X 中, 意法半导体还导入近红外摄像头图像传感器等组件。

  华为 Mate 30 Pro 采用的是 Sony 的方案,另外前后两颗 TOF 摄像头的模 组厂商主要有欧菲光和舜宇光学、镜头供应商主要为大立光和舜宇光学, Diffuser 由美国厂商 Viavi 和国内舜宇光学供应,VCSEL 由 Lumentum、纵慧 等供应。

  ToF 接收端的传感器芯片仍是以 Sony 为主,Sony 和三星作为图像传感 器芯片的龙头公司,在 TOF 市场也积累深厚,未来将成为市场的主要领导。国内主要由被韦尔股份收购的豪威科技,目前在 TOF 领域还没有明显动作。

  手机镜头领域,台湾大立光公司遥遥领先,2017 年占据全球市场 38% 的 份额,其次是国内公司舜宇光学,占据 17%的市场份额。华为 Mate 30 Pro 前后两颗 TOF 摄像头的镜头供应商主要为大立光和舜宇光学,看好 TOF 市场 爆发对舜宇光学业绩的拉动。

  窄带滤光片的薄膜一般由低折射率和高折射率的两种膜组成,叠加后层 数达几十层,每一层薄膜的参数漂移都可能影响最终性能。而且窄带滤光片 透过率对薄膜的损耗非常敏感,所以制备峰值透过率很高、半带宽又很窄的 滤光片非常困难。目前全球供应商仅有美国公司 Viavi 和国内水晶光电,水 晶光电给 Viavi 提供代工服务。iPhone 的 3D 结构光模组中 Viavi 在后期将 部分订单释放给水晶光电以减少生产费用,TOF 模组中也有望延续。此外, 在安卓端,水晶光电有望成为三星和华为的窄带滤光片的直接供货商,毛利 率将进一步提高。

  国内厂商相对来说在接收端优势更明显,包括模组、窄带滤光片和镜头等 环节。看好手机摄像头模组龙头厂商欧菲光,谨慎看好窄带滤光片龙头厂商水 晶光电,建议关注国内镜头领先厂商联创电子。

  欧菲光是全球手机摄像头模组龙头企业。公司目前业务包含两大部分:一是智能手机业务,主要产品包括手机摄像头模组、触控显示模组和生物识别模组;二是智能汽车业务,主要产品包括智能中控系统、智能驾驶系统(ADAS)和车身电子等。

  公司近 5 年营收保持快速增长,手机摄像头模组是公司最主要的业务,2017 年营收占公司总营收的 50%左右。2018 年随着内嵌触控(In-Cell)方案的崛 起,公司的外挂式触控业务受到重大影响,大幅拖累当年业绩。

  2019 年 11 月 19 日,公司发布公告称将非 A 客户相关的触控显示业务以股 权转让的形式出表并进行独立发展,未来将聚焦光学业务。公司在摄像头模组 领域具备技术和规模的领先优势,并是已经上市的多款 TOF 手机的模组供应商。看好 TOF 模组渗透率提高对公司业绩的拉动。

  水晶光电是全球滤光片龙头厂商,主要业务包括成像光学、新型显示、生 物识别、反光材料和蓝宝石衬底五大业务板块。成像光学主要包括手机摄像头 采用的红外滤光片等产品,新型显示主要包括视频眼镜、超短焦投影、HUD (Head-up Display,抬头显示器)和为微影光引擎等产品。

  公司 2018 年营业收入为 23.26 亿元,同比增长 8.39%,相比之前几年的 增速有较大幅度放缓,主要是因为 2018 年全球消费类电子尤其是手机行业的 发展渐入平稳期,增速放缓,以及 LED 业务产能过剩,导致蓝宝石衬底业务 收入萎缩;公司 2018 年归母净利润为 4.68 亿元,同比增长 31.57%,主要 系公司出售日本光驰股份带来的 1.62 亿投资收益所致。2019 年前三季度公 司实现营业收入 20.66 亿元,同比增长 26.43%;归母净利润为 3.60 亿元, 同比下滑 11.18%,主要系非经常性损益金额减少所致;扣非归母净利润为 2.87 亿元,同比增长 14.32%。

  公司作为全球仅有的两家窄带滤光片供应商之一,未来随着 TOF 渗透率提 高,一方面在 A 客户端受益 Viavi 的部分订单释放,另一方面受益安卓端的需 求增长,将成为三星和华为的窄带滤光片的直接供货商,毛利率进一步提高。

  公司是国内光学镜头、摄像头模组和触控显示产品领先厂商,产品应用于 智能手机、平板电脑等消费电子领域、以及运动相机、智能驾驶、智能家居、 VR/AR 等其他领域。据官网信息,公司目前具备年产高清广角镜头及手机镜头 1 亿颗、触摸屏 6000 万片、显示模组 8000 万片、触摸显示一体化 8000 万 片的生产能力。公司 2015-2017 年营收和净利润都保持较高的增速。2018 年 受到下游消费电子需求下滑等外部因素影响,公司营收和归母净利润有所下滑。2019 年上半年公司光学业务营收同比增长 88%,达 4.66 亿元,带动公司整体 营收重回上升通道。

  公司目前手机镜头客户主要为韩国大客户,用于 3D 感测的准直镜头已实 现量产,并已小批量出货给华为,公司是华为 3D 结构光模组准直镜头的唯一 供应商。公司表示目前已经具备 TOF 镜头及模组的生产能力,看好 TOF 模组渗 透率提高对公司业绩的拉动。

您可能还会对下面的文章感兴趣: